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of Macroscopic X-Ray Fluorescence
Data: A Case Study of Nineteenth
Century Icon

T. Gerodimos, D. Chatzipanteliadis, G. Chantas, A. Asvestas,
G. Mastrotheodoros, A. Likas, and D. F. Anagnostopoulos

Abstract This work comprehensively reviews artificial intelligence (AI) methods1

for macroscopic X-ray fluorescence (MA-XRF) data analysis of a religious panel2

painting (icon). MA-XRF is a powerful analytical imaging technique used to deter-3

mine the elemental distribution maps of inhomogeneous targets. For the data anal-4

ysis, we apply clustering algorithms such as k-means, factorization methods such as5

principal component analysis (PCA) and non-negative matrix factorization (NMF),6

and basic supervised machine learning methods, such as k-nearest neighbor (k-NN)7

regression and multilayer perceptron (MLP) regression. The applied AI methods8

allow for detailed and fast data analysis, providing two-dimensional elemental maps.9

The methods are beneficial for inexperienced users as they can analyze the MA-XRF10

data without detailed knowledge of the involved physics.11
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2 T. Gerodimos et al.

1 Introduction14

X-ray fluorescence spectroscopy (XRF) has wide application in investigating cultural15

heritage items because it allows for a rapid, accurate, and non-invasive elemental16

characterization [1]. X-rays penetrate deeper into matter than visible light. Recent17

advances led to the development of macroscopic XRF scanners (MA-XRF) that18

collect and process up to millions of successive spectra, scanning on the fly a prede-19

fined surface [2–4]. MA-XRF measurements produce big data that needs careful20

analysis to extract precise and accurate results. The outcome of the analysis is two-21

dimensional elemental maps across the scanned area. Applying MA-XRF for the22

study of paintings allows the extraction of elemental maps, which provide informa-23

tion about the pigments used and paint layer stratigraphy (i.e., painting technique)24

as well as restoration interventions/state of preservation [5, 6]. State-of-the-art anal-25

ysis techniques are mandatory to analyze the vast amount of data produced. The26

advancements in computer science, specifically in artificial intelligence, will signif-27

icantly boost the analysis of MA-XRF data. Application of AI methods, like clus-28

tering, factorization, and advanced machine learning algorithms, such as artificial29

neural networks, is expected to tackle essential issues, like time of analysis and30

unattended results interpretation by non-experienced users [7–11]. The current work31

demonstrates the potentialities of fundamental AI algorithms by investigating a Greek32

Orthodox Christian religious panel painting (“icon”).33

2 Materials and Methods34

2.1 Instrumentation and Measurement35

The potentialities of all proposed methods are explored through the examination of a36

19th-century Greek “two-zone icon” that depicts a “Deesis” scene (upper zone) and37

various Saints (lower zone) with dimensions of 46 × 32 cm2.38

The MA-XRF measurement was realized with the M6-Jetstream (Bruker) scanner39

[12, 13], which allows scan areas 80 × 60 cm2. The M6 Jetstream is equipped with a40

30 W Rhodium X-ray tube. In the present measurement, the X-ray tube was operated41

at a high voltage of 50 kV and a current of 600 μA, while no absorption filter was42

applied on the beam path of the ionization radiation. The incoming from the source43

X-ray beam is focused using a polycapillary glass optic and impinges perpendicularly44

to the target surface. The excitation beam spot size had a diameter of 580 μm. The45

sensor detects photons emerging at an angle of 60° relative to the target surface. A46

silicon drift detector of 30 mm2 active area is used for the photon detection, with47

an energy resolution of 145 eV at the Mn Kα-energy. A total of 202 × 318 mm2
48

were scanned (upper zone—“Deesis”), as shown in Fig. 1 (left), with a pixel size of49

1000 μm. The dwell time was 10 ms per pixel and the overall measurement time was50

~15 min. Each spectrum consists of 4096 channels, while a total of 64,236 spectra51

546446_1_En_3_Chapter � TYPESET DISK LE � CP Disp.:25/8/2023 Pages: ?? Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Artificial Intelligence Analysis of Macroscopic X-Ray Fluorescence … 3

Fig. 1 Left: Scanned image; Right: Sum spectrum of the scanned image

were collected and the corresponding sum spectrum is shown in Fig. 1 (right). The52

dominant observed elements are Pb, Fe, Ca and Hg.53

2.2 Artificial Intelligence Applied Methods54

On one hand, PCA and NMF are machine-learning techniques that can be applied to55

XRF spectra to extract useful information and patterns from the data. PCA is a dimen-56

sionality reduction technique that reduces the number of variables in a dataset while57

preserving as much of the variation in the data as possible [14]. In the context of XRF58

spectra, PCA can identify the highest intensities X-ray transitions that contribute to59

the spectra structure [15]. NMF is a widely used technique for factorizing a matrix60

into the product of two non-negative matrices [16]. In the context of XRF spectra,61

NMF can decompose the spectra into a set of “basis spectra”, each corresponding62

to a different elemental component. Both PCA and NMF can be useful for identi-63

fying a material’s dominant elemental components or detecting subtle differences in64

elemental composition between samples [17, 18].65

Clustering, on the other hand, is a technique that groups similar data points66

together into clusters. With clustering algorithms in XRF spectra, we can identify67

unknown materials or detect outliers in a dataset. The main objective of clustering68

methods in XRF analysis is the grouping of similar in-shape spectra in distinct clus-69

ters corresponding to areas with comparable elemental composition. The cluster70

formation is based on the relative intensities of the spectral lines [19, 20].71

Artificial Intelligence Networks (ANNs) are a group of machine learning algo-72

rithms that can learn how to predict elemental distribution intensity from a set of73

training data, such as XRF spectra in our case. Weighted k-nearest neighbors (k-74

NN) and multilayer perceptron (MLP) are two different types of machine learning75

algorithms that can be used for MA-XRF elemental distribution map prediction.76

Weighted k-NN is an extension of the k-NN algorithm, in which the prediction77

is computed as the weighted average of the values of the k nearest neighbors. The78

weight of each neighbor is calculated as the inverse of its distance to the test point so79

that closer neighbors have a more significant influence on the prediction than more80
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4 T. Gerodimos et al.

distant neighbors. This allows the model to give more importance to the points closest81

to the test point, which can be helpful when the data has a non-uniform distribution82

or when there is noise in the dataset.83

MLP is a feed-forward artificial neural network composed of an input layer, one84

or more hidden layers, and an output layer. Each layer is made up of a set of artificial85

neurons, which are connected to the neurons in the adjacent layers via a set of weights.86

The network learns to make predictions by adjusting the weights to minimize the87

error between the predicted output and the ground truth during training [21, 22]. In88

this context, ANN’s can be used to predict the elemental distribution maps from XRF89

data by performing regression of the output elemental distribution maps.90

3 Results and Discussion91

3.1 Matrix Factorization Analysis92

For the matrix factorization analysis, we consider the measured XRF spectra as a93

three-dimensional “data cube”. A data cube X(4096 × 202 × 318) consists of two94

spatial dimensions (representing the x and y axis’ pixels of the image in consideration)95

and one energy dimension representing the spectrum associated with each pixel. With96

the use of NMF, we decomposed the data cube into the product of two non-negative97

matrices, (X = W × H), where W is a 2-dimensional matrix (4096 × 6) representing98

the “basis spectra”, and H is a 3-dimensional matrix (6 × 202 × 318) representing the99

“basis images”. The “basis images” give information about the spatial distribution of100

the elements, while the “basis spectra” provide information about the XRF spectrum101

of each component. PCA method was also used with the same approach [15]. Python’s102

sklearn module was used for both methods [23], and the results are shown in Figs. 2103

and 3.104

The data were analyzed using PyMca (version 5.6.7) [24] and the main elements105

were identified. Thus, for each pixel-spectra, a ground truth elemental composition106

with the intensities per element was created, thus providing the distribution map for107

Fig. 2 Set of “basis spectra” according to the PCA (left) and the NMF analysis (right)
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Artificial Intelligence Analysis of Macroscopic X-Ray Fluorescence … 5

Elemental Map PCA NMF
Pb

C
a

H
g

Fe

Fig. 3 Elemental maps according to PyMca analysis (ground trurh/left), and subset of “basis
images” according to PCA (center) and NMF (right) analysis

each of the elements presented in the painting. For instance, Fig. 3 (left) shows the108

elemental maps of Pb, Ca, Hg and Fe as they emerged from the analysis.109

Both methods effectively produced elemental distribution maps and identified110

patterns and structures in the data. As shown in Fig. 2 methods yield spectra with111

peaks that are perfectly aligned with the XRF excitation energies sum spectrum. Also,112

as we show in the maps of Fig. 3, the main elements of the icons are in good agreement113

with the ground truth results. Especially the Pb and Fe elemental maps extracted by114

the factorization methods are in excellent agreement with the ground truth analysis,115

while there some concerning the Ca’s map. One of the most interesting findings in116

this study is the comparison of the performance of PCA and NMF in identifying117

Hg, an element with low concentration in the panel painting, as shown in the sum118

spectrum (Fig. 1). Despite the low concentration, NMF could accurately identify119

Hg, while PCA performed poorly. This suggests that NMF may be more robust to120

low concentration levels and that it should be considered a viable alternative when121

analyzing elemental distribution maps containing trace elements.122
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6 T. Gerodimos et al.

3.2 Cluster Analysis123

The well-known k-means clustering algorithm [25, 26] was selected for the dataset124

analysis due to its simplicity and low computational complexity. The measured125

spectra were grouped into six non-overlapping groups. As inferred from the sum126

spectrum (Fig. 1) and the ground truth elemental maps (Fig. 3, left), Pb and Ca127

are dominating the painting. For this reason, and as intensities have nonnegative128

values, we apply the square root function to the intensity of the data set during129

the cluster analysis. Square root transformation can help reduce the effect of high-130

intensity pixels, which can disproportionately affect the clustering results dominating131

the cluster centers.132

For each cluster, the mean spectrum was evaluated (Fig. 4, left), providing signif-133

icantly better statistics than any single-pixel spectrum of the data set. The mean134

spectrum represents areas of similar composition, thus allowing the accurate identi-135

fication of the elements’ presence. This, in turn, permits the extraction of informa-136

tion about the used pigments, paint layer stratigraphy, painting technique, previous137

restoration interventions, and state of preservation of each area of the panel painting138

in consideration [10, 11].139

Two clusters (“1” and “2”) are dominated by the Ca Kα intensities, while in cluster140

“1” the transition lines of Pb appear as well. In both clusters Fe (at 6.4 keV) is also141

present. In traditional icon painting, craftsmen always covered the wooden substrates142

with successive gesso layers; the latter was made by mixing gypsum (CaSO4·2H2O)143

with animal glue [27]. The Ca transition lines are weak to the rest of the clusters due144

to their absorption by the superimposed paint layers in the areas where the gesso has145

been covered by heavy element-based pigments, such as lead white and cinnabar.146

Nevertheless, minor calcium is often detected in various (primarily earth) pigments.147

Four clusters (“0”, “3”, “4”, and “5”) are dominated by the Pb Lα and Lβ intensi-148

ties. In cluster “4,” there are intense Hg L transitions and the weak K transition of Cr149

and Fe at 5.4 keV and 6.4 keV, respectively. The cluster corresponds to the bright-150

red colored areas, and the identified elements suggest using a red lead chromate151

plus cinnabar pigment mixture to render these areas [28]. Cluster “0” corresponds152

Fig. 4 Left: Cluster mean spectra, Right: Spatial distribution per cluster
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Artificial Intelligence Analysis of Macroscopic X-Ray Fluorescence … 7

to flesh areas. There is an intense Fe K transition, indicating the admixture of ochre153

to provide the dark tone in lead white [11].154

3.3 k-NN Regression155

For the k-NN regression algorithm, we first select a representative part, i.e.,156

containing all the elements of the icon under study (columns 170–190 as denoted by157

the blue stripe in Fig. 5), corresponding to 6.3% of the total pixels. It is important to158

note at this point that each pixel-spectrum Xi corresponds to a vector-target yi with159

the intensities of the elements derived from the XRF analysis.160

Following this, we employ the k-NN regression algorithm with weights, with a161

value of k equal to 5, on the whole image and check the results given to verify the pres-162

ence of the elements in the remaining regions of the painting. To evaluate the perfor-163

mance of the proposed method, we utilize the Structural Similarity Index (SSIM)164

[29] as a widely accepted metric for assessing the quality of the results obtained. The165

SSIM is a widely used quality index for image comparison that compares the struc-166

tural information and pixel-level variations between the elemental distribution maps167

produced by the k-NN algorithm and the ground truth. It provides a value between −168

1 and 1, where 1 indicates a perfect match and values closer to −1 indicate significant169

dissimilarity. Figure 5 shows the results of the k-NN algorithm for the four dominant170

chemical elements (Pb, Ca, Hg, Fe). SSIM index scored pretty good results ranging171

between 0 and 1, with most of its values towards the higher end of the scale. This is172

particularly evident at the left edge of the images, where the SSIM value is closed to173

0. This observation can be logically explained by the fact that the region in question174

pertains to a border area between distinct elements, potentially even the edge of the175

image itself.176

3.4 MLP Regression177

The MLP regressor consists of an input layer of 4096 neurons, like the spectra size,178

one hidden layer of 100 neurons, respectively, and finally, an output layer of 12179

neurons, one per chemical element. The activation function used for the hidden layer180

was ReLU, and Adam was set as an optimizer with a learning rate of 0.001. As a loss181

function, L2 was used, and the training lasted 381 epochs as the training loss did not182

improve more than a tolerance threshold of 0.0001 for ten consecutive epochs.183

The results (Fig. 6) showed that the MLP Regressor performed better than the184

k-NN Regressor in terms of SSIM score (in all four elements scored more than185

0.9), indicating that it was able to predict the elemental distribution maps with a186

higher degree of accuracy and structural similarity to the ground truth maps. It seems187

possible that the MLP Regressor, being a more complicated neural network, has a188

larger capacity to learn from the data and model more complex relationships and189
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8 T. Gerodimos et al.

Prediction SSIM Index
Pb

 
C

a
H

g
Fe

 

Fig. 5 Left: k-NN regression algorithm predicted elemental maps for Pb, Ca, Hg, and Fe; Right:
SSIM index score of k-NN regression algorithm per element. In blue is denoted the area used for
the training

correlations between the input spectra and the output elemental distribution maps.190

Also, MLP demonstrated better ability for generalization handle better variations191

and possible errors in the data, something especially evident in the left part of the192

image. In contrast, the k-NN Regressor is a simpler model that may not be able to193

capture the same level of complexity.194
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Prediction SSIM Index
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Fig. 6 Left: MLP regression algorithm predicted elemental maps for Pb, Ca, Hg, and Fe; Right:
SSIM index score of k-NN regression algorithm per element. In blue is denoted the area used for
the training

4 Conclusion195

In the present work, we investigated AI techniques to analyze big data created during196

MA-XRF imaging experiments. Specifically, we applied matrix factorization tech-197

niques, like PCA and NMF, to obtain “basis elemental maps” via dimensionality198

reduction. This approach allowed the computational extraction of elemental distri-199

bution maps, which highly agree with the elemental maps extracted by complete XRF200

spectroscopic analysis. It is worth to be noted that PCA and NMF, being unsupervised201
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10 T. Gerodimos et al.

methods, provide similar results with the XRF analysis methodology. Moreover, we202

applied k-means clustering to pack thousands of spectra of similar structures in a203

small number of representative mean spectra. The clustering identifies areas with204

similar elemental distribution, composition, and elemental correlation. Moreover,205

the significantly higher statistics of the cluster’s mean spectrum allow not only the206

detection and identification of the dominant elements, but also trace elements from207

weak transition lines. Finally, k-NN and MLP regression algorithms were applied to208

predict the elemental distribution from the MA-XRF spectra. A representative part209

of a nineteenth century icon was used to train the neural network methods to predict210

the elemental distribution. The predicted by the NN elemental maps is in remarkable211

agreement with the ground truth elemental distributions. In conclusion, the present212

study indicates that the AI methods are up-and-coming for the analysis of MA-XRF213

big data, as they are significantly faster than the spectroscopic analysis and partic-214

ularly useful for inexperienced users, as there are no requirements for the involved215

physics. This makes the investigation for efficient AI algorithms, combined with the216

variety of MA-XRF big data, highly desirable.217
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