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Introduction

X-ray fluorescence (XRF) spectrometry has been proven to be a core, non-destructive, analytical technique in cultural heritage studies, mainly because of its non-invasive character and ability to reveal the

elemental composition of the analyzed artifacts rapidly. With the recent advances in scanning XRF spectrometers capable of attaining data on macroscopic dimensions (MA-XRF), XRF is excessively used for the

in-situ analysis of works of art. Characteristic transition intensities extraction per pixel from the scanned images, signifying the elemental distribution, have nonlinear correlations with the measured spectra due to

transitions overlapping, scattered radiation, and artifacts like escape peaks, pile-ups, and Bragg peaks. For this reason, elemental analysis requires time and human intervention with appropriate software [1]. To

facilitate and improve data processing, we explore advanced machine learning techniques to predict elemental maps of the main elements of paintings scanned with M6 Jetstream (Bruker). We test and compare

different architectures of neural networks (NN), like deep multilayered perceptron (MLP) and deep convolutional neural networks (CNN), to find the optimal model for achieving accurate prediction.
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In this work, we compare two artificial neural network architectures in the problem of elemental intensity

distribution prediction through the XRF spectra without previous elemental analysis and human intervention.

Convolution before linear layers seems to give better results. However, lower accuracy in both approaches

is observed in low-intensity peaks and on energetically close peaks.

Definition of models

In the first model, we tried a 1D classical CNN architecture. A

CNN is a deep learning model commonly used in image

processing and classification. We trained our model to predict

the intensity for each one of 11 elements (S, K, Ca, Cr, Mn, Fe,

Cu, Sr, Au, Hg, Pb) in the output, given the spectrum of each

pixel as input. The architecture of the ConvNet we used is

shown in Figure 3.

In the second model, we use a deep MLP architecture, shown in

Figure 4. We implemented these two architectures to perform a

comparative study between them and evaluate the role of

convolution as data preprocessing in X-ray fluorescence

spectra.

Structural Similarity 
Index (SSIM) 

Element CNN MLP

S 0.99 0.66

K 0.80 0.57

Ca 0.99 0.90

Cr 0.99 0.88

Mn 0.97 0.78

Fe 1.00 0.94

Cu 0.98 0.90

Sr 1.00 0.87

Au 0.96 0.86

Hg 1.00 0.98

Pb 1.00 0.97

Input Layer

4096

Hidden Layer 1

2048

(ReLU)

Output Layer

11 elements’ intensities

Hidden Layer

512

(ReLU)

Kernels size:5,

ReLU,

Maxpool: 2

Kernels size:3,

ReLU,

Maxpool: 2

Kernels size:3,

ReLU,

Maxpool: 2

Kernels size:3,

ReLU,

Maxpool: 2

Kernels size:3,

ReLU,

Maxpool: 2

flattening
Fully connected

Figure 3: CNN architecture.

Figure 4: MLP architecture.

Figure 1: M6 Jetstream (Bruker)

MA-XRF Scanner.

Figure 5: Heatmaps of z-score normalization, ground truth and prediction’s elemental maps for K, Au, Hg, Pb. Figure 6: Distribution of number of pixels per counts interval.

Table 1: SSIM between 

ground truth and prediction’s 

elemental maps for all 11 

elements. In red the 

elements shown in Fig. 5

Data acquisition

In our experiment, spectra were collected with a

MA-XRF scanner (M6 Jetstream, Bruker), as shown

in Figure 1. The M6 Jetstream has a 30 W Rh X-ray

tube with polycapillary optics. The present measu-

rements were performed with a high voltage of 50

kV and a current of 600 μA. We scanned three

religious panel paintings (dimensions of 536×404,

202×318, and 564×428 mm2, respectively), and we

collected about 500k spectra with a beam spot of

580 μm. We randomly used ~50k spectra to reduce

the training time and improve our models'

generalization. After, we tested our models using

another painting (364×274 mm2) shown in Figure 2.

Results

All models' performance was evaluated using K-Fold Cross Validation. The Dataset was

partitioned into K different subsets that were subsequently used for testing the k-th trained

model. Models' performance was obtained by the average of K testing scores. In Figure 5,

we present the ground truth elemental map distribution of K, Au, Hg, and Pb in comparison

to the results given by each model. To evaluate these results, firstly, we plot the distribution

of the number of pixels per count for these four elements, as shown in Figure 6. Secondly,

we compute the z-score normalization for the results of each model, as shown in the heat

maps in Figure 5. Z-score normalization involves the rescaling of pixel values. It performs

zero centering of data by subtracting the mean value from each pixel and dividing each

dimension by its standard deviation, as given in Equation (1):

The colors white, yellow, red and black correspond to abs(z) ≤ 1, abs(z) ≤ 2, abs(z) ≤ 3 and

abs(z) > 3, respectively. Finally, we compute the Structural Similarity Index (SSIM) [2]

between the ground truth and the predicted elemental map of each element as show in

Table 1.

Figure 2: St John the Forerunner 

and a Hierarch.


