
CLUSTERING METHODS IN MA-XRF DATA ANALYSIS
Theofanis Gerodimos1, Ioannis Georvasilis2, Anastasios Asvestas1, Georgios P. Mastrotheodoros1,3,

Giannis Chantas2, Aristidis Likas2, Dimitrios F. Anagnostopoulos1

(1) Department of Materials Science and Engineering, University of Ioannina, Greece

(2) Department of Computer Science and Engineering, University of Ioannina, Greece

(3) Conservation of Antiquities & Works of Art Department, West Attica University, Greece

Introduction

X-ray fluorescence (XRF) spectrometry has been proven to be a core, non-destructive, analytical technique in cultural heritage studies, mainly because of its non-invasive character and ability to reveal the

elemental composition of the analyzed artifacts rapidly. With the recent advances in scanning XRF spectrometers capable of attaining data on macroscopic dimensions (MA-XRF), XRF is excessively used for the

in situ analysis of works of art. As spectral data are high dimensional, intelligent data analysis methods are needed to achieve data summarization and visualization to conclude the existence of patterns and

structures. Cluster analysis in X-ray fluorescence data processing is a constantly evolving field. For this reason, in recent years, several clustering methods have been proposed [1-2], each of which yields

interesting results. On the one hand, the diversity of approaches and methodologies equips us with many tools to analyze the vast and diverse amount of data resulting from X-ray fluorescence. On the other

hand, the profusion of options confuses. In this work, we survey two data analysis methodologies aiming to study an 18th-century Greek religious icon (i.e., panel painting) to a small number of distinct clusters

that involve comparable spectra.
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This work compares two clustering approaches in X-ray fluorescence data analysis. We study dimensionality

reduction algorithms and show a way to emphasize elements with lower intensities with a previous

normalization of the data set. As a result, the cluster analysis gives different results. Finally, from the two

approaches, it becomes clear that no unique approach can work optimally in all cases.

Figure 1: M6 Jetstream (Bruker)

MA-XRF Scanner.

Data acquisition

In our experiment, spectra were collected with a MA-XRF

scanner (M6 Jetstream, Bruker), as shown in Figure 1. The

M6 Jetstream has a 30 W Rh X-ray tube with polycapillary

optics. The present measurements were performed with a

high voltage of 50 kV and a current of 600 μA. We scanned a

part (242X291 pixels) of an 18th-century Greek religious icon

(i.e., panel painting) with a beam spot of 580 μm. as shown

in Figure 1&2. Figure 2: Virgin Mary “Odigitria”.

Methodology

Our approach for MA-XRF data interpretation is based firstly on applying the k-

means clustering algorithms to group the spectra with common features. This

procedure groups the ~70K spectra in the X-ray cube spectrum into ten distinct

clusters. Then, principal component analysis (PCA) and t-distributed stochastic

neighbor embedding (t-SNE) statistical methods are applied to the X-ray cube

spectrum to allow for the visualization of the high-dimensional data. Then, we use

the log-log square root transformation of the original spectrum to achieve some

normalization.

Figure 3: Linear normalization. Left) Two-dimensional scatter plot of ten clusters, Center) Three-dimensional 

scatter plot of ten clusters,  Right) Clusters distribution in the real space of the icon.

Results

In Figure 3, we show the spatial distribution in two, and three-dimensional scatter plots after k-means application in our data and dimensionality reduction algorithm. In Figure 4, we show the results of the method

after the log-log square root normalization.

Clusters’ distribution and centroids (linear)

Figure 4: log-log root square normalization. Left) Clusters distribution in the real space of the icon, Center) Three-dimensional 

scatter plot of ten clusters after normalization. Rght) Two-dimensional scatter plot of ten clusters after normalization.  

Clusters’ distribution and centroids (log-log square root)

In this case, Cu Kα transition dominates

in four clusters (0, 3, 6, and 9). In Virgins

Mary’s mantle, the cluster distribution

perfectly matches the corresponding

elemental map. It is also evident that the

entire halo becomes a unique Ca

dominated cluster (1). However, it

contains gold, as shown in the painting

and the Au elemental map (Figure 5).

In this case, low-intensity elements acquire

sufficient weight to form clusters due to

normalizing the intensities with the log-log

square root. Despite the fact that Cu

dominated clusters lose resolution, we

observe a Au dominated cluster (0) and a

separate Ca dominated that corresponds

perfectly with elemental maps. Also Hg

cluster (2) fits better with the

correspondence elemental map (Figure 5).
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Figure 5: Elemental maps distribution.


